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To take full advantage of the capabilities of grazing incidence fast atom diffraction (GIFAD) as an
experimental technique for analyzing surfaces and phenomena that occur on them, versatile theoreti-
cal tools are needed that accurately describe the experiments while allowing a simple but meaningful
interpretation at a reasonable computational cost. During the last years, the semiquantum method
named surface initial value representation (SIVR) has been postulated to fill this room. However, to
date, SIRV has not yet been validated using full quantum calculations as a reference. Here, we have
contrasted GIFAD simulations performed with the SIVR approach with those obtained with the full
quantum method known as Multi Configuration Time Dependent Hartree (MCTDH), taking into
account the influence of the size of the initial wave packet. Our comparative study, using GIFAD
for the He-LiF(001) system as a benchmark, shows a very good agreement, both qualitative and
quantitative, between SIVR and MCTDH simulated diffraction spectra, under different incidence
conditions. These findings support the use of SIVR as a versatile theoretical tool to extract as much
accurate information as possible from GIFAD experiments.

I. INTRODUCTION

The grazing incidence fast atom diffraction (GIFAD)
experimental technique [1, 2] is a very promising surface
analysis tool [3, 4], which could be used both as a comple-
ment and as an alternative to well-known and widely used
thermal-energy atom scattering (TEAS) [5–8] and reflec-
tion high energy electron diffraction (RHEED) [9, 10].
However, to extract as much information as possible from
GIFAD measurements it is essential to have reliable theo-
retical tools able to accurately simulate and describe such
experiments. Available theoretical methods to describe
GIFAD range from purely classical to semiclassical and
semiquantum to purely quantum methods [11]. All of
them are based on the validity of the Born-Oppenheimer
approximation, which allows one to disentangle the elec-
tronic structure calculation from that of the nuclei dy-
namics. Regarding the electronic structure, we can find
in the literature a handful of methods, relying on the use
of density functional theory (DFT) and periodic bound-
ary conditions (PBC), that yield accurate potential en-
ergy surfaces (PES) [12–16]. In this study, we have used
the corrugation reducing procedure (CRP) [16] to build
our PES. Regarding the nuclei dynamics, pure classical
methods allow one to obtain some physical insights by
analyzing the classical trajectories, at a very low com-
putational cost (see, e.g., GIFAD classical results for
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H/LiF(001) [17]), but they lack a suitable description of
the quantum mechanisms involved in GIFAD. Pure quan-
tum GIFAD simulations, on the other hand, accurately
capture the physics associated with interference phenom-
ena [18–20], but at the price of much higher complexity
and computational cost, and a less intuitive physical in-
terpretation. A compromise between these two extreme
methods is the use of semiclassical or semiquantum meth-
ods, which satisfactorily describe quantum phenomena
while keeping the simplicity of a classical analysis.

A semiclassical method was in fact used to theoret-
ically predict GIFAD five years before it was experi-
mentally observed [21]. Since then, different flavors of
semiclassical dynamics have been used, aiming to un-
ravel the main physical mechanisms that underlie this
phenomenon. Among them, the simplest ones are those
based on three-dimensional (3D) classical trajectories
that combine classical [22–26] or local classical [27] scat-
tering cross sections incorporating a phase to account
for the quantum interference, and those based on the
surface eikonal approximation [28–32]. These methods
provide, in general, a good representation of the experi-
mental diffraction patterns, but largely overestimate the
intensity of the outermost maxima of the angular dis-
tribution which are close to the classical rainbow an-
gles. Noteworthy, the surface initial value representation
(SIVR) approximation [33] is a semiquantum method
which solves this shortcoming. SIVR takes into account
the quantum effects associated with GIFAD, such as clas-
sically forbidden transitions, interference, and coherence
lengths, without losing the appealing representation of
the interference mechanisms in terms of classical tra-
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jectories. The SIVR approach, including its extension
phonon-SIVR [34] that incorporates phonon transitions,
has already been used to describe several GIFAD exper-
iments [33, 35–40]. However, it has never been tested
using full-dimensional quantum computations as a refer-
ence. Such a comparison would allow us to study the
validity limit of this approximation.

With this idea in mind, in this article we compare
semiquantum SIVR and pure quantum Multi Configu-
ration Time Dependent Hartree (MCTDH) calculations
[41, 42] for He/LiF(001) GIFAD along the 〈110〉 chan-
nel, using the same PES and the same initial conditions.
For this test, it is necessary to take into account that,
as in the experiments [43], within the SIVR approach
the collimating scheme governs the transverse coherence
length of the incident wave packet, which determines the
azimuthal width of the diffraction peaks. In contrast,
the MCTDH method considers the incidence of an ideal
extended plane wave on the surface plane, and, conse-
quently, the interference maxima become perfect delta
functions located at the Bragg angles. Therefore, in or-
der to enable the MCTDH-SIVR comparison, we analyze
the influence of the profile of the incident wave function
on the MCTDH patterns by considering Gaussian wave
packets with different transverse widths. Concerning the
SIVR method, although the incident projectile is always
described as a wave packet, different bases of intermedi-
ate quantum states, ranging from position to momentum
eigenstates, can be used to derive the IVR time-evolution
operator [44], which is the kernel of the SIVR approx-
imation. Since one of the most common intermediate
bases employed within the IVR description corresponds
to Gaussian wave packets with fixed spatial and momen-
tum widths, in this work we use these intermediate states
to study the dependence of the SIVR results on the choice
of the intermediate basis. Our study highlights the re-
markable agreement, both qualitative and quantitative,
between MCTDH and SIVR results, when the transverse
width of the intermediate states coincides with that of
the initial wave packet. Thus, these findings validate the
use of this latter semiquantum approach to study phe-
nomena associated with GIFAD.

In this article, atomic units (a.u.) are used unless oth-
erwise stated.

II. THEORETICAL MODELS

A. Projectile-surface potential

The He-LiF(001) PES is built by combining PBC-DFT
calculations, performed with the planewaves-based pack-
age QUANTUM ESPRESSO [45], with a multidimen-
sional interpolation technique, involving cubic splines
and the CRP procedure [16].

Within the DFT calculations, the electron-core in-
teractions are described with projector augmented-wave
(PAW) pseudopotentials [46, 47], while the Perdew-

Burke-Ernzerhof (PBE) functional [48] is used to account
for exchange-correlation within the generalized gradient
approximation (GGA). The optimization of the LiF bulk
geometry yields a lattice constant of 7.684 a.u. (4.066
Å), in good agreement with the experimental value, 4.02
Å[49].

We represent the LiF(001) surface by means of the

supercell-slab scheme. The supercell consists of a
√

2 ×√
2 surface cell, a six-layer slab, and a vacuum layer

of ∼ 14.23 Å. The relaxed surface equilibrium geome-
try presents a rumpling, defined as the half-distance be-
tween relaxed F and Li planes. For the topmost F and
Li planes, we get a rumpling of +0.036 Å, with F atoms
moving outward and Li atoms moving inward. This value
is consistent with previous works [50] and with LEED ex-
periments which yield a rumpling of 0.02± 0.01Å [49].

We make use of PBC-DFT calculations to evaluate
the potential energy of the He-LiF(001) system over a
three-dimensional grid of He-atom positions (Xi, Yi, Zi),
where Zi is the coordinate in the direction normal to the
LiF(001) surface. We consider 6 high-symmetry (Xi, Yi)
configurations and 28 non-equidistant Zi values between
0.13 Å and 6.88 Å. In the calculations, the energy cutoff
in the plane-wave expansion has been set on 80 Ryd for
the wave functions and 480 Ryd for the charge density
and potential. A 2×2×1 Monkhorst–Pack grid of special
k-points (shifted from the origin in the directions parallel
to the surface) is used for the Brioullin-zone integration.
With this choice of parameters, ab initio energies are con-
verged within 1 meV.

B. Quantum simulations: MCTDH method

The MCTDH method [41, 51] allows one to efficiently
compute quantum probabilities for projectile/surface sys-
tems, as previously shown for both molecular reactiv-
ity [52–54] and atomic diffraction [55, 56]. Within
the MCTDH framework, we solve the time-dependent
Schrödinger equation,

ĤΨ(R, t) = i
∂Ψ(R, t)

∂t
, (1)

by representing the time-dependent nuclear wave func-
tion of the atomic projectile Ψ(R, t) as a sum of
Hartree products of time-dependent single-particle func-
tions (SPFs), such as:

Ψ(q1, q2, q3, t) =

m1∑
i1=1

m2∑
i2=1

m3∑
i3=1

Ai1,i2,i3(t)

3∏
k=1

φ
(k)
ik

(qk, t).

(2)
In this equation, qk represents the kth mode, which in
our particular case is equal to the kth degree of freedom
of the projectile, and Ai1,i2,i3(t) are the time-dependent

expansion coefficients. The SPFs (φ
(k)
ik

), on the other
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hand, are expanded in a primitive time-independent basis
set, such as:

φ
(k)
ik

(qk, t) =

Nk∑
jk=1

a
(k)
jk,ik

χ
(k)
jk

(qk). (3)

Within this formalism, the equations of motion for
both the SPFs and the expansion coefficients are derived
from the Dirac-Frenkel variational principle, leading to a
set of coupled equations. At this point, it should be no-
ticed that the efficiency of the MCTDH algorithm can
be improved by expressing the potential as a sum of
one-dimensional (1D) functions. Thus, we have trans-
formed our non-separable PES corresponding to the 3D
projectile-surface interaction (VPS ≡ V 3D) into this form
by employing the so-called POTFIT algorithm [57, 58],
which approximates the potential as:

V 3D ≈ V app =

m1∑
i1=1

m2∑
i2=1

m3∑
i1=3

Ci1,i2,i3vi1(q1)vi2(q2)vi3(q3),

(4)
where vik are 1D natural potentials and Ci1,i2,i3 are the
expansion coefficients, which are calculated as the over-
laps between the non-separable PES and the natural po-
tentials. To ensure accuracy of V app, one can perform an
iteration process to improve the potential description in-
side the relevant dynamical region. To do so, a modified
reference potential V̂ 3D is defined as a linear combination
of the exact and fitted potentials, such as:

V̂ 3D
i1i2i3 = wi1i2i3V

3D
i1i2i3 + (1− wi1i2i3)V app

i1i2i3
(5)

In this equation, the weight function (w) is set to 1 in-
side the relevant dynamical region, and < 1 outside this
region. To optimize the interaction process, avoiding nu-
merical inaccuracies in the potential fitting of the repul-
sive regions, a maximum potential value is set up during
the procedure.

Finally, a flux analysis of the reflected wave function
is performed to obtain diffraction probabilities, upon ab-
sorption by a complex absorbing potential, WZ0 = ηz(Z−
Z0)nθ(Z−Z0), which is placed in the non-interacting vac-
uum region. The MCTDH probabilities shown through-
out this article have been obtained using the Heidelberg
MCTDH package [59]. In Appendix B (Table II), we
have listed the parameters used in the calculations.

1. Dependence on the initial wave function

In MCTDH simulations, the result of the flux analysis
will depend on the form of the initial wave function. One
option is to perform full coherence (perfect collimation)
calculations by using an initial wave function written as

a product of a Gaussian function in the direction perpen-
dicular to the surface (z direction) and a plane wave in
the surface plane (x and y directions), such as:

Ψ(R, t0) ∝ e−(
Z−Z0
σz

)2eiKi·(R−R0). (6)

where R0 = (X0, Y0, Z0) is the mean projectile posi-
tion at the initial time t0, with Z0 placed in the non-
interacting region far from the surface, σz is twice the
standard deviation of the probability distribution of the
wave packet in Z direction, and Ki is the initial projectile
momentum.

In this first case, we describe the diffraction of a pro-
jectile that has a very precise initial momentum paral-
lel to the surface plane from an infinite periodic crys-
tal, which is associated with the full coherence condi-
tion. Hence, the diffraction spectra present Bragg peaks
that are perfect delta functions placed on the Laue circle
θ2f + ϕ2

f = θ2i , where θf (θi) is the final (initial) polar
angle, measured with respect to the surface, and ϕf is
the final azimuthal angle measured with respect to the
axial channel (x direction). The intensities of the Bragg
peaks are governed by intrachannel interference, i.e., in-
side a unique channel (see the inset of Fig. 1), a.k.a.
form factor. Such intrachannel interference gives rise to
rainbow and supernumerary rainbow maxima that mod-
ulate the heights of the delta functions. On the other

hand, their azimuthal positions, ϕ
(B)
f , are determined by

interchannel interference (a.k.a. structure factor), read-

ing ϕ
(B)
f = arcsin (nλ/dy), where λ = 2π/Ki is the de

Broglie wavelength of the incident projectile, dy is the
width of the channel, and n (integer number) is the Bragg
order [25].

Another option is to take into account collimation ef-
fects by considering a finite transverse coherence length
σy in the initial wave function [35, 43]. To do so, we in-
troduce a Gaussian function to describe the motion along
the y direction, perpendicular to the incidence direction,
such as:

Ψ(R, t0) ∝ e−(
Z−Z0
σz

)2e
−(Y−Y0σy

)2
eiKi·(R−R0). (7)

In this second case, the initial wave packet is centered
at (Y0, Z0) with associated transverse widths σy and σz
and uniformly delocalised along the x axis, that is, a
combination of a plane wave and Gaussian wave packets.
As a result, the azimuthal spectrum presents non-zero

diffraction probabilities outside the Bragg positions ϕ
(B)
f ,

which yields diffraction peaks with a characteristic width.
Now, the computation of such diffractograms requires a
flux analysis in a uniformly distributed ensemble of initial
wave packets in the y axis and a grid representation of
the interaction potential that includes several repetitions
of the primitive cell in the y direction.

As experimentally and theoretically studied in Refs.
[35, 43], the collimation setup of the atomic beam governs
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FIG. 1: (Color online) MCTDH spectra, as a function of the azimuthal angle ϕf , for different initial wave functions: Black
circles display MCTDH results for Nch = +∞ [Eq. (6)], while solid lines show MCTDH results considering a finite transverse
coherence length [Eq. (7)], with Nch denoting the number of coherently illuminated channels, as given by Eq. (8). The dashed
lines represent the spectra obtained from the Gaussianized-MCTDH method (see text for explanation). The vertical dashed

lines indicate the positions ϕ
(B)
f of the Bragg peaks. The inset depicts intrachannel and interchannel interference.

the transverse coherence length of the incident particles,
which strongly affects the GIFAD patterns. For a given
incidence condition, the σy value increases as the width
of the collimation slit decreases [35, 60]. Current experi-
mental setups have reduced this width to values smaller
than 0.1 mm to increase σy, consequently lowering the
beam divergence to less than 1 mrad [4, 39]. Throughout
this work, the σy value will be expressed in terms of the
number Nch of equivalent axial channels that are coher-
ently illuminated by the incident wave packet, which is
defined as [60]:

Nch =
2σy
dy

, (8)

where dy = 2.875 Å is the width of the 〈110〉 channel of
LiF(001). With this definition, we ensure that approxi-
mately 95% of the norm of the wave function is covering
Nch channels before projectile-surface collision. Notice
that when Nch → +∞ collimation effects banish and
the final diffractogram will exhibit the delta-like diffrac-
tion peaks expected from full coherence MCTDH calcu-
lations.

Azimuthal MCTDH distributions derived from differ-
ent initial wave functions are shown in Fig. 1 for 4He

impact with an incidence energy E = K2
i /(2mP ) = 1.25

keV, where mP is the projectile mass. The normal energy
E⊥ = E sin2 θi, which controls the intrachannel interfer-
ence, was chosen as E⊥ = 0.5 eV, corresponding to the
intermediate range for He-LiF(001) GIFAD [30].

In Fig. 1, the azimuthal MCTDH spectra obtained by
including a finite transverse coherence length, as given
in Eq. (7), are compared with the Bragg intensities cor-
responding to the full coherence MCTDH distribution
[Eq. (6)], which corresponds to Nch = +∞. As ex-
pected, the MCTDH distribution for Nch = 1, which
is associated with pure intrachannel interference, acts
as an envelope function that determines the intensities
of the delta-function peaks derived within the MCTDH
method for Nch = +∞. But when the number of co-
herently illuminated channels increases becoming larger
than 1, the MCTDH distribution displays a combination
of intrachannel and interchannel interferences, as it is
observed for Nch = 2. In this case, the Bragg peaks are
no longer delta functions, showing a finite width. How-
ever, their peak intensities agree with those of the full
coherence calculation, being also modulated by the pure
intrachannel distribution.

From Fig. 1, we can see that the shorter the transverse
coherence length, the larger the width of the Bragg peaks.
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Note however that the MCTDH spectrum for Nch = 0.5
captures only partially the intrachannel interference and
the curve does not match the intensities of all the full
coherence peaks, as discussed in Ref. [38]. Therefore, we
conclude that the use of Eq. (7) to describe the initial
wave function allows one to simulate experimentally non-
ideal collimating conditions.

In addition, in Fig. 1 we have included what we will
hereafter call Gaussianized-MCTDH simulations. These
latter results are obtained from the convolution of the
full coherence MCTDH probability for a given Bragg or-
der, with a Gaussian function with standard deviation
σG, so that the area of the Gaussian function matches
the height of the corresponding MCTDH delta-function
peak. In the Gaussianization used in Fig. 1, the width of
the Gaussian functions was chosen to match that of the
corresponding finite-coherence MCTDH spectra. But,
generally speaking, this width can be chosen to account
for the experimental resolution or to match the width
of the peaks obtained within the SIVR approximation
(see Sec. II C). At this point, it is also important to
mention that, to make a meaningful comparison, the
Gaussianized-MCTDH distribution must be normalized
to one of the peaks of the spectrum with which we want
to compare; for example, in Fig. 1 the central peak was
normalized to that of the MCTDH spectrum for Nch = 2.
We observe that using this procedure, the Gaussianized
curve for Nch = 2 perfectly agrees with that obtained
with the finite-coherence MCTDH method. A similar
agreement is also found for Nch = 1. But for Nch = 0.5,
the Gaussianized distribution slightly underestimates the
intensity of the external peaks of the finite-coherence
MCTDH spectrum. This fact might be associated with
the influence of the spot-beam effect for Nch < 1 [38].

C. Semiquantum simulations: SIVR approximation

The SIVR approximation is based on the IVR ap-
proach developed by Miller [44], which takes as a starting
point the Feynman path integral formulation of quantum
mechanics, introducing the standard Van Vleck approxi-
mation of the quantum time evolution operator [61, 62].
The resulting IVR time evolution operator is expressed
in terms of classical trajectories with different initial con-
ditions, without any additional assumptions (such as the
widely employed stationary phase approximation), and
allows for an approximate description of the classically
prohibited transitions in terms of real value trajectories.
The IVR method has been successfully applied to dif-
ferent atomic, molecular, and nuclear processes [63–67].
SIVR is an extension of IVR for addressing gas-surface
scattering processes such as GIFAD. The SIVR approach
makes use of the IVR time evolution operator of the
quantum state of the projectile to derive a first-order
time-dependent distorted wave theory. The interested
reader can find details of its derivation in Refs. [33, 35].

Within the IVR method, it is possible to use different

wave function bases to express the approximated time-
evolution operator [44]. In particular, in previous articles
[33, 35] the SIVR description of GIFAD was obtained by
using a basis of Cartesian coordinates states |R〉 of the
projectile. But an equivalent approach can be derived by
using a basis of coherent states |p, r〉, defined as [68]

〈R|p, r〉 =
(γ
π

)3/4
e−

γ
2 (R−r)

2

eip·(R−r), (9)

with γ being a positive real parameter. The |p, r〉 states
are Gaussian wave packets with fixed spatial and momen-
tum dispersions, σs = (2/γ)1/2 and σm = (2γ)1/2, respec-
tively [69]. Hence, they are hybrid states, intermediate
between position and momentum eigenstates, which be-
come position eigenstates |r〉 as γ → +∞ and momentum
eigenstates |p〉 as γ → 0.

By employing the coherent states of Eq. (9) within the
IVR method [44], the scattering state of the projectile at
the time t can be expressed as :

∣∣∣Ψ(SIV R)
i (t)

〉
=

∫
dR

∫
dRo fs(Ro)

∫
dPo fm(Po)

× C(t)1/2

(2
√

2π)3
〈R|Po,Ro〉∗ Φi(R)

× exp(iSt) |Pt,Rt〉 , (10)

where the asterisk indicates the complex conjugation and

Φi(R) =
1

(2π)3/2
eiKi·R (11)

is the initial wave function of the projectile, with R the
position vector of the center of mass of the incident atom
and Ki the initial projectile momentum. In Eq. (10),
the coherent state |Pt,Rt〉 is associated with the time-
evolved position (Rt) and momentum (Pt) of the incident
atom at a given time t, which are derived by consider-
ing a classical trajectory Rt ≡ Rt(Ro,Po) with start-
ing (to = 0) position Ro and momentum Po. The mo-
mentum Pt is calculated from the classical trajectory as
Pt = mP dRt/dt, while the functions fs(Ro) and fm(Po),
given respectively by Eqs. (12) and (14) of Ref. [35],
describe the spatial and momentum profiles of the ini-
tial wave packet at a fixed distance Zo from the surface,
where the atomic projectile is hardly affected by the sur-
face interaction. The function St denotes the classical
action along the trajectory

St =

t∫
0

dt′
[
P2

t′

2mP
− VPS(Rt′)

]
, (12)

with VPS the projectile-surface interaction, and the func-
tion
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C(t) = det

[
∂Rt

∂Ro
+
∂Pt

∂Po
+
γ

i

∂Rt

∂Po
+
i

γ

∂Pt

∂Ro

]
(13)

is a determinant evaluated along the classical path.
We use the SIVR scattering state, given by Eq. (10),

within the framework of the time-dependent distorted-
wave formalism [70]. Following steps similar to those of
Ref. [33], the SIVR amplitude for the transition Ki →
Kf can be expressed as

A
(SIV R)
if =

∫
dRo fs(Ro)

∫
dPo fm(Po)

× a(SIV R)(Ro,Po), (14)

where

a(SIV R)(Ro,Po) =
−i

(2π)6
exp[− (Ki −Po)2

2γ
]

×
+∞∫
0

dt C(t)1/2 GPS(t)

× exp
[
i
(
ϕ
(SIV R)
t −Q ·Ro

)]
(15)

is the partial transition amplitude associated with the
classical path Rt(Ro,Po) and Q = Kf −Ki is the pro-
jectile momentum transfer, with Kf being the final pro-
jectile momentum that satisfies Kf = Ki (i.e., elastic
scattering). The SIVR phase at the time t,

ϕ
(SIV R)
t =

t∫
0

dt′
[

1

2mP
(Kf −Pt′)

2 − VPS(Rt′)

]
,

(16)
coincides with that of the previous SIVR approach [33],
while the function GPS(t) takes into account the 3D
projectile-surface interaction along the trajectory,

GPS(t) =

∫
dr VPS(Rt + r) exp

[
−γ

2
r2
]

× exp [−i (Kf −Pt) · r] , (17)

but averaging its contribution around the surroundings.
An analytical expression of GPS(t) can be obtained by
expanding such contribution to first order in r, reading

GPS(t) '
(

2π

γ

)3/2 [
VPS(Rt) +

i

γ
FPS(Rt) · (Kf −Pt)

]
× exp

[
− (Kf −Pt)

2
/(2γ)

]
, (18)

where FPS(R) = −ORVPS(R) denotes the force acting
on the projectile at the R position. Note that, as ex-
pected, when γ → +∞ the partial transition amplitude
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FIG. 2: (Color online) Intrachannel spectra, as a function of
the azimuthal angle ϕf , for 4He incidence with E = 1.25 keV
and E⊥ = 0.1 eV. Solid lines, SIVR distributions derived from
Eq. (19) for different γ values; blue dashed line, projectile
distribution obtained by using the SIVR coordinate form, as
given by Eq. (9) of Ref. [33].

a(SIV R) given by Eq. (15) tends to that given by Eq.
(9) of Ref. [33], which will be here named as the SIVR
coordinate form.

The SIVR differential probability for elastic scattering
with final momentum Kf in the direction of the solid
angle Ωf ≡ (θf , ϕf ) is obtained from Eq. (14) as

dP (SIV R)/dΩf = K2
f

∣∣∣A(SIV R)
if

∣∣∣2 . (19)

1. Dependence on the parameter γ

The SIVR partial amplitude a(SIV R) given by Eq. (15)
depends on the parameter γ, which determines the fea-
tures of the intermediate coherent states |p, r〉. Notice
that the states {|p, r〉} form an over-complete basis of
quantum states [68]. However, as already reported for
different applications of the IVR method [71–74], we find
that the SIVR simulations are affected by the γ value.
Therefore, in this subsection we analyze the influence of γ
on the projectile distributions obtained within the SIVR
approach.

Since the relative intensities of the diffraction max-
ima are determined by the intrachannel factor, associated
with the interference inside a single channel, we confine
our study of the γ-dependence to Nch = 1 spectra for 4He
impact with E = 1.25 keV and different normal energies.

For a low energy case, E⊥ = 0.1 eV, in Fig. 2 we com-
pare azimuthal intrachannel spectra derived within the
SIVR approximation using different γ values - γ = 27.0,
0.27, and 0.027 a.u. - along with results obtained employ-
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FIG. 3: (Color online) Analogous to Fig. 2 for E⊥ = 0.5 eV.

ing the SIVR coordinate form [33]. These γ parameters
were chosen by taking as a reference γ = 0.27 a.u., a value
for which the transverse length σy of the |p, r〉 states coin-
cides with that of the coherently illuminated region (i.e.,
σy = (2/γ)1/2 = Nchdy/2, with Nch = 1). For higher γ
values, the spatial dispersion of the coherent states de-
creases, making the SIVR distribution gradually approx-
imate to that derived from the coordinate form, as ob-
served for the SIVR distribution with γ = 27.0 a.u. This
latter SIVR distribution, as well as the one derived from
the coordinate form, exhibit a broad structured peak at
ϕf = 0 together with intense lateral maxima, which are
associated with rainbow scattering. Note, in addition,
that both the width of the central peak and the intensity
of the outermost maxima diminish as γ decreases, and
the SIVR distributions for γ = 0.27 a.u. and γ = 0.027
a.u. are very close to each other.

A similar γ-dependence of the azimuthal intrachannel
distributions is observed in Fig. 3 for E⊥ = 0.5 eV. Using
again the SIVR spectrum for γ = 0.27 a.u. as a refer-
ence, we find that the increase or decrease of this γ value
by one order of magnitude almost does not affect the
SIVR intrachannel spectrum, except for the outermost
rainbow peaks, whose i intensity noticeably increases for
γ = 2.7 a.u. Furthermore, the supernumerary maxima
of these SIVR distributions are shifted about 0.07 deg
with respect to those obtained within the SIVR coordi-
nate form. Such ϕf shift of the supernumerary peaks is
roughly independent on E⊥ in the normal energy range
from 0.2 to 1 eV.

From the analysis of the SIVR results displayed in Figs.
2 and 3, we will choose the γ value of the |p, r〉 interme-
diate states as the one that reproduces the transverse
spatial width σy of the incident wave packet, whose spa-
tial profile fs(Ro) is included in Eq. (14). This choice
will be thoroughly examined in Sec. III. A by contrast-
ing the corresponding SIVR results with full quantum

-0.8 -0.4 0.0 0.4 0.8
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1.25 keV 4He  <110> LiF(001)

FIG. 4: Two-dimensional diffraction charts, in terms of the
normal energy E⊥ and the azimuthal angle ϕf , for 4He im-
pact along the 〈110〉 channel with energy E = 1.25 keV. (a)
Gaussianized-MCTDH results, with σG = 0.01 deg, and (b)
SIVR simulations for Nch = 2.

MCTDH distributions for different normal energies.

III. RESULTS

Our research focuses on He atoms impinging on a
LiF(001) surface along the 〈110〉 direction, with a normal
energy E⊥ ranging between 0.1 and 1.5 eV. Under these
incidence conditions, the experimental projectile distri-
butions present rich GIFAD patterns [30, 50]. In order
to test the performance of the semiquantum approach,
we compare SIVR simulations with pure quantum re-
sults derived from the MCTDH method, both calcula-
tions obtained by using not only the same PES, as given
in Sec. II. A, but also the same transverse profile of the
initial wave function (i.e., with the same finite transverse
coherence length σy). The study is limited to a frozen
ideal LiF surface, with the crystal atoms at rest at their
equilibrium positions, that is, without including lattice
vibrations (i.e., phonons). Furthermore, in all the cases
SIVR results were derived from Eq. (14) choosing the
γ value as γ = 2/σ2

y, with σy the transverse width of
the incident Gaussian wave packet, as discussed in Secs.
II B.1 and II C.1.

A. Semiquantum vs. quantum methods

We start analyzing the overall features of the semi-
quantum distributions by contrasting SIVR and MCTDH
diffraction charts for 4He projectiles with an incidence
energy E = 1.25 keV. Fig. 4 displays the SIVR two-
dimensional chart, as a function of E⊥ and ϕf , for an
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FIG. 5: Azimuthal projectile distributions, as a function of the azimuthal angle ϕf , for the case of Fig. 4 considering four
different normal energies: (a) E⊥ = 0.1 eV, (b) E⊥ = 0.3 eV, (c) E⊥ = 0.5 eV, and (d) E⊥ = 1 eV. In all panels, the red
solid line displays the SIVR distribution for Nch = 2; black solid line, MCTDH distribution Gaussianized with σG = 0.01 deg,
as explained in the text; green dashed line, MCTDH simulations with a finite transverse coherence length corresponding to
Nch = 2. The vertical dashed lines indicate the Bragg-peak positions.

initial wave packet involving Nch = 2 channels coher-
ently illuminated, together with the diffraction chart ob-
tained from Gaussianized-MCTDH simulations. Both
GIFAD charts were built from azimuthally projected dis-
tributions for different normal energies, normalized to
their respective total intensities. Moreover, the trans-
verse spatial width of the convolution function used
in the Gaussianized-MCTDH calculations was fixed as
σG = 0.01 deg to match the azimuthal width of the SIVR
Bragg peaks (see Sec. II B.1). The computational cost
of performing each of these calculations ranged from 96
h (E⊥ = 0.1 eV) to 42 h (E⊥ = 1 eV) of total CPU time
in case of full coherence MCTDH (when 99.6% of the
initial wave-packet is absorbed) and from 14 to 12 h in
case of SIVR, measured in 2.6 GHz intel Xeon E5-2670

and 3.8 GHz intel i7 10700K processors, respectively. In
appendix A we include a table with the computational
resources required to complete a benchmark calculation
(E⊥ = 0.5 eV) in more detail.

From Fig. 4, we observe that the SIVR chart is in good
accord with the MCTDH one, reproducing very well the
intensity modulation of the different Bragg orders as a
function of E⊥ along the whole normal energy range.
But despite this remarkable agreement, it should be no-
ticed that diffraction charts provide a qualitative, albeit
extremely sensitive, description of the GIFAD patterns.
Therefore, to thoroughly inspect the ability of the SIVR
approach to reproduce full quantum GIFAD descriptions
we should resort to the comparison of azimuthal projec-
tile distributions.
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In Fig. 5, we compare SIVR and MCTDH spectra, as
a function of the final azimuthal angle ϕf , for different
normal energies - E⊥ = 0.1, 0.3, 0.5, and 1.0 eV- under
the incidence conditions of Fig. 4. That is, the SIVR re-
sults were obtained by consideringNch = 2 axial channels
coherently illuminated by the atomic beam [75], while
the Gaussianized-MCTDH distributions were derived by
convoluting the MCTDH probabilities for Nch = +∞ in
order to fit the azimuthal width of the SIVR peaks. At
this point, we stress that such convolution procedure was
found to not only reproduce the MCTDH simulations for
the corresponding finite transverse coherence length, as
shown in Fig. 1, but also match the Bragg intensities of
the full coherence MCTDH distribution. Furthermore,
both SIVR and MCTDH spectra were normalized at the
central peak (i.e., at ϕf = 0), except for Fig. 5 (d),
where the central peak almost vanishes and the spectra
were normalized at the first-order peaks.

From Fig. 5, we observe that the SIVR approxima-
tion describes the MCTDH azimuthal distributions for
the different E⊥ quite well. In particular, taking into
account the extreme sensitivity of the GIFAD patterns,
the remarkably good agreement between the suppressed
or reduced-intensity Bragg orders of both spectra - SIVR
and MCTDH - represents a clear indication of the reli-
ability of the SIVR approach. However, note that in all
the cases the azimuthal range of the SIVR distribution
is slightly smaller than that of the MCTDH spectrum,
partially missing the decreasing intensity of the Bragg
peaks in the dark region of rainbow scattering. More-
over, for the lower normal energies [Figs. 5 (a) and 5
(b)], the outermost SIVR maxima are higher than those
of the MCTDH distribution, due to an overestimation
of the rainbow peak in the intrachannel factor. Both
behaviors are related to the contribution of classically
forbidden transitions in the outermost region of the rain-
bow peak. In this particular zone, the SIVR approach
gives an approximate description of the involved quan-
tum transitions, while the MCTDH method provides a
full quantum treatment of them.

B. Experimental comparison

To investigate in more detail the performance of the
SIVR and MCTDH methods under finite-coherence inci-
dence conditions, in Fig. 6 we compare our theoretical
results with an experimental spectrum of 4He/LiF(001)
GIFAD recently reported for a relatively high normal en-
ergy - E⊥ = 1.45 eV - [4], which displays rainbow and
supernumerary rainbow maxima only. Hence, the SIVR
distribution was evaluated considering a single-channel
illumination (i.e., Nch = 1), which corresponds to pure
intrachannel interference. In Fig. 6, the intrachannel
SIVR spectrum, as a function of the deflection angle
Θ = arctan(ϕf/θf ), is in good accord with the Gaussian-
ized MCTDH distribution for σG = 1.0 deg, and both de-
scribe the angular positions of the experimental maxima

FIG. 6: Projectile distribution, as a function of the deflec-
tion angle Θ, for 4He impact along the 〈110〉 channel with
energy E = 5 keV and E⊥ = 1.45 eV. Experiments extracted
from Fig. 17 of Ref. [4]. Simulations: red solid line, SIVR
approximation for Nch = 1; black dashed and solid lines,
Gaussianized-MCTDH results with different σG values, as in-
dicated. The vertical dashed lines indicate the Bragg-peak
positions.

very well. Since the Θ positions of the supernumerary
maximum are exceptionally sensitive to the corrugation
of surface potential, this theoretical-experimental agree-
ment reveals the adequate description provided by SIVR
and MCTDH in combination with the PES model of Sec.
II. A.

It is noteworthy that the experimental distribution of
Fig. 6 presents a wide background, presumably due to
the contribution of phonon-mediated processes, which
are not included in our simulations. As mentioned in
Sec. II. B. 1, GIFAD distributions are influenced by the
collimation scheme, which determines the transverse co-
herence of the incident particles. But, in addition, at high
normal energies the patterns become strongly affected by
the phonon transitions, whose contribution introduces
increasing decoherence as the normal energy augments
[4, 76]. However, strikingly, if the full coherence MCTDH
results are Gaussianized using σG = 2.0 deg to match the
width of the experimental peaks, they are able to re-
produce the relative intensities of the experimental spec-
trum. An analogous behavior can also be obtained by
Gaussianizing the SIVR results. Alternatively, one can
observe a moderate agreement with the experiments of
Fig. 6 by adding a constant background to the theo-
retical distribution (See Appendix C, Fig. 9). At this
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FIG. 7: Analogous to Fig. 6 for 3He impact with energy
E = 3 keV and E⊥ = 0.99 eV. Experiments extracted from
Fig. 3 of Ref. [25].

point, we should stress that the precise relation between
the widening of the peaks and/or the background cannot
be derived from the present theoretical models, which
are based on a static crystal. The contribution of in-
elastic phonon-mediated processes is indeed a topic that
deserves further research [77].

In Fig. 7, we repeat the previous analysis by con-
trasting our simulations with experimental data for 3He
projectiles impinging on LiF(001) with E⊥ = 0.99 eV
[25]. Again we observe that for Nch = 1, the SIVR and
Gaussianized-MCTDH (with σG = 1.5 deg) distributions
agree with each other, accurately reproducing the angu-
lar positions of the experimental maxima. But, as in Fig.
6, the proper description of the experimental intensities
with the Gaussianized-MCTDH method requires the in-
crease of the Gaussian width to σG = 2.2 deg. The need
of such a large convolution and/or a combination with a
background (See Appendix C, Fig. 10) is still an open
problem [76, 77].

Finally, in Fig. 8 the SIVR spectrum for Nch = 2
along with Gaussianized-MCTDH results are compared
with the experimental distribution for 4He impact with
E⊥ = 0.365 eV [4]. In this case, the SIVR and MCTDH
simulations predict similar GIFAD patterns, with miss-
ing even-order peaks in the central region of the spec-
trum (i.e., for n = 0, ±2, and ±4). Such behavior is in
agreement with the experimental data, except for n = ±4
where the experiment displays relatively intense maxima.
Some factors that could be related to the mentioned dif-

FIG. 8: Projectile distribution, as a function of the azimuthal
angle, for 4He impact along the 〈110〉 channel with energy
E = 5 keV and E⊥ = 0.365 eV. Experiments extracted from
Fig. 18 of Ref. [4]. Simulations: red solid line, SIVR approx-
imation for Nch = 2; black solid line, Gaussianized-MCTDH
results with σG = 0.01 deg. The vertical dashed lines indicate
the Bragg-peak positions.

ferences observed between theory and experiment for this
case could be the level of approximation of the PES de-
scription in this normal energy range and/or an exper-
imental misalignment that produces a shift in the az-
imuthal positions of the Bragg peaks, which might affect
their relative intensities. Furthermore, at this energy, the
SIVR results overestimate the outermost-peak intensities
of both the experimental and MCTDH distributions, as
also seen in Fig. 5.

IV. CONCLUSIONS

Willing to further assess the suitability of the semi-
quantum SIVR approach to reproduce, analyze, and ex-
tract information from GIFAD, we have performed a
comparative study of SIVR with a full-quantum dynam-
ics approach, namely, the MCTDH method. We have
used He/LiF(001) as a benchmark system due to the
amount of experimental measurements available in the
literature. To ensure a detailed and accurate compari-
son, we have used the same He/LiF(001) PES, computed
by applying the CRP procedure to a set of DFT energies,
in both calculations. Moreover, we have taken into ac-
count the collimation effects in the MCTDH simulations,
just as it is done in the SIVR ones, allowing us to scru-
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tinize the influence of the initial wave-packet size. Our
analysis reveals a remarkable agreement between SIVR
and MCTDH diffraction charts and patterns. Theoreti-
cal simulations also show a very good accord with exper-
imental measurements. Thus, from our assessment, we
conclude that SIVR is a precise and versatile theoretical
tool to study GIFAD-related phenomena.
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Appendix A: Computational resources

This section is not aimed to present a systematic com-
parison between MCTDH and SIVR computational re-
sources usage. Calculations have been performed on dif-
ferent CPU architectures and chipsets and we only in-
tend to show a qualitative view of the computing power
required to simulate GIFAD spectra with both methods.
To do so, we resume on table I the computational re-
sources consumed by full coherence MCTDH (Nch =∞),
multi wave-packet MCTDH (Nch = 2) and SIVR calcu-
lations using the same initial condition. As stated in
the main text, full coherence MCTDH computational re-
sources were measured for calculations running in a 2.6
GHz intel Xeon E5-2670 processor, while SIVR resources
were estimated in a 3.8 GHz intel i7 10700K proces-
sor. Computational resources used in multi wave-packet
MCTDH calculations with Nch = 2 (see figure 1), were
measured on a 3.0 GHz intel Xeon Gold 6248R proces-
sor. In MCTDH calculations, resources were monitored
until 99.6% of the total wave-packet norm was absorbed
by the complex absorbing potential located in the scat-
tering channel

TABLE I: Computational resources required to run MCTDH
(Nch = ∞), MCTDH (Nch = 2), and SIVR calculations for
1.25 keV 4He, 〈110〉, and E⊥ = 0.5 eV initial conditions.

MCTDH MCTDH SIVR
Nch =∞ Nch = 2 Nch = 2

total CPU time (h) 32 109 13

wall time (h) 3.5 25 13

number CPUS 16 16 1

RAM memory (MB) 40 1400 40

trajectories/wave-packets 1 19 2× 105

Appendix B: Parameters used in MCTDH
calculations

In Table 1, we list the parameters used in MCTDH
simulations for He/LiF(001) GIFAD when full coherence
(ideal perfect collimation) (Nch = +∞) and finite coher-
ence lengths (Nch < +∞), respectively, are considered.

TABLE II: MCTDH parameters for quantum calculations
with full coherence (Nch = +∞) and finite coherence length
(Nch < +∞). ∆RMS and ∆max are the root mean square and
maximum errors of POTFIT fit to the CRP potential used
in SIVR calculations on the entire grid representation. When
superscript (r) is present, it denotes that the error is mea-
sured only inside the dynamics relevant region. FFT stands
for Fast Fourier Transform primitive basis set.

Calculation type

POTFIT grid parameters Nch = +∞ Nch < +∞
X range (Å) [0, 2.875] [0, 2.875]

Y range (Å) [0, 2.875] [0, 25.875]

Z range (Å) [0.2, 15.0] [-2.0, 15.0]

Number of grid knots 72×72×324 36×324×324

Natural potential basis 15×15×contr 15×15×contr

Type of primitive basis FFT FFT

POTFIT accuracy Nch = +∞ Nch < +∞
Relevant region V 3D <10 eV V 3D <10 eV

Iterations on rel. reg. 10 10

∆RMS, ∆
(r)
RMS (meV) 0.76, 0.080 0.93, 0.11

∆max, ∆
(r)
max (meV) 29, 2.2 29, 3.7

Complex absorbing potential Nch = +∞ and Nch < +∞
Z-range (Å) [7.0, 15.0]

order 2

strength (au) 2.8×10−5

Initial wave function Nch = +∞ Nch < +∞
Width, σz (Å) 2.0 2.0

Width, σy (Å) +∞ Nchdy
2

Z0 position (Å) 10 10

Y0 position (Å) not defined [11.50, 12.86]

num. wave packets 1 19

Dynamics parameters Nch = +∞ and Nch < +∞
SPFs x×y×z 10×15×20

propagation time (fs) [1000, 2000]
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Appendix C: Diffractograms with background
addition

Although the proper description of the experimental
distributions of Figs. 6 and 7 would require an adequate
treatment of all the phonon-mediated processes, here we
show how the SIVR distributions forNch = 1 compare
with the experiments (and with wide-width Gaussianized
MCTDH results) when a constant background is added
to the SIVR probability.

FIG. 9: Analogous to Fig. 6. Simulations: red solid line,
SIVR approximation for Nch = 1 with a constant background
addition and; solid black line, Gaussianized-MCTDH with
σG = 2.0◦ .
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